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NATIONAL ADVISORY COMMITTEE FOR AERONAﬁTICS

TECHNICAL NOTE 2658

LAMINAR BOURDARY IAYER OVER FLAT PLATE IN A FLOW HAVING
CIRCULAR STREAMLINES

By Artur Mager and Arthur G. Hensen

SUMMARY

The lsminar-boundary-layer development over a semi-infinite flat
plate placed in a flow with cofcentric circular streamlines was investi-
gated with the limitation of small total turning of the main-stream
flow. The shape of the velocity profiles in the direction of the main-
stream flow and perpendicular to it was analytically determined for an
incompressible flow and a compressible flow with Prandtl number equal

to 1.

The boundary-layer thickness was shown to be proportional to the
square root of the distance from the leading edge of the plate when
measured along the streamline of the main-stream flow. The deflection
of the boundary-layer flow at the plate surface from the direction of
a clrcular streamline in the main flow was shown to vary directly with
the turning. With increase in the Mach nunber of the main-stream flow,
both the boundary-layer thickness and the deflection increased.

INTRODUCTION

The relative lack of theories explaining the behavior of boundary
layer when a lateral curvature of the main-stream flow exists has been
especially apparent in the application of aerodynsmics to the design of
turbomachinery. The development of the boundary layer in such cases is
strongly influenced by the corresponding normal pressure gradient toward
the center of curvature, giving rise to a component of "secondary flow"
in the boundary layer. For the laminar case, most of the published work
has been restricted to yawed cylinders, wings, and cones (references 1
to 4). One notable exception of direct application to the design of
campressors and turbines is reference 5, wherein the boundary layer on a
rotating blade is analyzed. For the turbulent case, a general but
approximate solution of the momentum-integral equations based on an
assumed velocity distribution and friction law is obtained in refer-
ence 6,
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Aside from the conventional boundary-layer approach to this prob-
lem, a number of investigators (references 7 to 9) have obtained solu-
tions for secondary flow arising from flows of varying total pressure
or varying enthalpy by neglecting the influence of viscosity but admit-
ting the existence of vorticity. Although such procedure obviously does
not permit satisfaction of all the boundary conditions (because the
order of the general differential equations for the flow is reduced),
the results so obtained give a fair check with the experimental data,
except in the regions close to the wall. Thus the indications are that,
while it is possible to obtain a fair picture of three-dimensional flows
in the preceding cases by neglecting viscosity, such procedures are
inadmissgble where thin boundary layers exist.

LSg2

The object *of this investigation, whi¢h was conducted at the NACA
Lewis lsboratory, is to solve a case somewhat analogous to that of
references 7 to 9 in regard to main-flow orientation while retaining the
usual Prandtl boundary-layer assumptions, and thus to demonstrate the
influence of viscosity and compressibility on the secondary flow in
relatively thin boundary layers.

To this end, the main flow outside the boundary layer is assumed to .
follow concentric circular streamlines in planes parallel to a semi-
infinite flat plate and to be uniform in a direction perpendicular to
the plate. Tne edge of the plate is placed so as to coincide with a ¥
radial line through the axis of the main flow (fig. 1). It is assumed,
of course, that in the established main-stream flow the effect of vis-
cosity is neglibible. In the simplification of the equations for the
flow, it was found convenient to follow the procedure first used by
Moore (reference 4).

Although the solution is primarily of theoretical interest, it may
have some direct bearing on the understanding of secondary flows over a
portion of the hub between the compressor guide vanes where the boundary
layer is probably still thin and laminar, and where the main flow under-
goes relatively little turning, often along a circular path. Here again
the analysis would probably be applicable only in regions where boundary-
layer flows from the blade surfaces and other "wall effects" were not

influential.
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BASIC EQUATIONS

The following equations describe the motion of a compressible vis-
cous fluid in vector form (reference 10):

Conservation of mass

o>+ p(v+) = 0 _ (1)

Conservation of momentum

B =T vp i F i D + 2 [)w] T D) -

2 () () (2)
Conservation of energy
p BE—-,C- +p(v-q) = A+Vv. [(kv)T] (3)

where the dissipation funection is given by

—_ - _ —_ 2 -

A= {ZV-[(ch)q] + (vx@)2 - 2qv-q) - (V'Q)z}
Equation of state

p = PRT (4)
(A1l symbols are defined in the appendix.)

When dealing with problems involving a lateral curvature of the

potential flow it is convenient to use an orthogonal coordinate system
illustrated in figure 2. This system is characterized by a fixed refer-

ence axis x of arbitrary curvature c = c(x) and is related to a
Cartesian system.‘)(i as follows:
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Xl=fcosﬁh+zsinﬁ \ .
0

& (5)

bt
o

1]
d

(53]
il
2357

constant + z cos B :F sin B dx J
0

Wwhere

=8
T &

B = B(x)

The elements of length at (X,y,z) in the direction of the increas- .,
ing coordinates are

hjdx  hpdy  hzdz
and their values may be obtained by use of equations (5) as

hy = (1 + cz)

The transformation of equations (1), (2), and (3) from the Cartesian
system to the orthogonal system is readily obtainable by use of the
expressions for the elements of length (see , for instance, reference 11
or 12). When the y-axis is assumed perpendicular to the surface over
which the flow takes place and the usual Prandtl assumptions about the
order of magnitude of various terms are made, the equations (1), (2),
and (3) take the following form for steady flow in a boundary layer where
equations (6), (7), and (8) correspond to equations (1), (2), and (3), *

respectively:
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B dforom locand)e @

u | du du du c 1 Jp o Bu)
P\NT ¥ ez X" Voy* vz " T+ ez W/ =-Txczoxt Jy\Mdy
(72)

u_ ow ow ow c 2Y_ op, O ow
"(m&“’s‘y‘“’&-mu)“&*a L3y ()
Concomitant with (7a) and (7b) is the result that g% is of order of
magnitude & & O.

u OE OE OE P Ju 9
P T Tz ox*Vay tVoz)= - Trea\on* S5y L1+ calv] +

> . 13u\2 faw\E] 3 ( ar
Sa [(l + cz)w|p + p 53;) +(5§ + 57 \k 5y (8)
The equation of state (4) remains unchanged.

Because of the nature of the problem under comsideration, several
simplifications in the preceding equations can be made. First, the fixed
reference axis x will be chosen to coincide with a streamline of the
main-stream flow where these streamlines are assumed to be arcs of con-
centric circles in planes parallel to a semi-infinite flat plate (see
fig. 1). This flat plate 1s oriented so that its leading edge is orthog-
onal to the reference axis X; hence the leading edge can be defined by
x =0, y=0. Secondly, if the velocity of the fluid in the main stream
is designated wuj, it follows that u] = constant along any given stream-

line; that is, u; = uy(z).

It also follows from the nature of the prescribed main-stream flow
that the pressure gradient in the x-direction and outside the boundary
layer is identically zero. In view of the order of magnitude of Jp/dy,
the same pressure prevails in the boundary layer as in the main flow,
and consequently (where the subscript indicates partial differentiation)

Px =0 (9)
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|
In addition, for flow with circular streamlines it may be shown
that : .
c
v, = (T5ez) P1w? (10) .
. N
9
The boundary conditions on equations (6) and (7) are
u(x,0,2) = up(z) )
w(x,00,2) = O
u(x,0,z) = w(x,0,z) = v(x,0,z) =0
where
x>0
| L (11)
and at the leading edge ‘ .
u(0,y,2) = Uy | W
w(0,¥,2) = V(O;Y:Z) =0
where
y >0 J

For equation (8) , usually two boundary conditions on temperature are
used by defining its value at y =0 and y—» ». For the case under
consideration, however, it will be necessary to define temperature only

at y = 0.

SOLUTION OF EQUATIONS

Application of Vector Potential Concept

In order to satisfy the equation of continuity (6) and to eliminate
one dependent varigble from equations (7), the concept of a vector poten-
tial is employed (see reference 4). To this end, two functions ¥ and
¢ are defined, where L
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Y
(L + cz)pw =Q, (12)
(1 + cz)ov =-(¥, +9,)

It may be verified by direct substitution of equations (12) into equa-
tion (6) that equation (6) is identically satisfied.

Substitution of equations (9), (10), and (12) into equations (7a)
and (7b) yields

¥ Wy Wy' c Cpy
o (v (3 von (B, e i (3

: ¥
=(l+W)&Q§4y (13a)
® ® o
WY [;(l fycz)}x + [(l +yEZ)] <¥¥>z - (WX +'$z) [pil +yéz$}y - 5'(Wy)2 -
(14 cz)é 0 171 M<m>yy

Incompressible Case

The solution for the incompressible flow (p = constant) will be
presented first. For this case it is necessary to consider only equa-
tions (13) in the boundary layer; the energy equation need not be used.

In asccordance with the usual procedure in the solution of incom-
pressible boundary-layer flows, the following substitutions for the
variables are employed:
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U1

n=y VXZl + zc5

P /xvul(l + zc) F() (14)

<=
i

@=pcx (1 + zc) Mkvul(l + zc) G(n)

The following system of equations is obtained by substituting
expressions (14) along with their appropriate partial derivatives into
equations (13) (note that p/p = v):

1+ duy
(ex)? o'F [( ulczc) =+ 1} -

du n
(_QX)Z e [g + (lzzu]Z-C) dzl:l - F}-; - P11t = Q (153)

FG" 2 2 .2 (@ + zc) duy
1o - 1 - 111 t -
F'G > + (l F ) G +»(cx) G T 3

| du
2 an é (l + ZC) 1 _
(ex)® G"G [% + kvl b 0 (15b)
It is interesting to note that setting

up = ul,O(l + zc)n (16)

in (15a) and (15b) reduces these equations, respectively, to the forms

1"

(cx)2 G'F* (n+ 1) + (cx)2 F"G(-és— + n> - F——TZ-'— -F'r =0 (17a)

11 ‘
a(ex)® (61)2 - {cx)? G"G(%+ n>+ po oI (1 - FB) LG =0

(17v)

2357



Lse2

NACA TN 2658 9

Letting n = -1 in equation (16) gives the expression for the velocity
in the classical irrotational vortex flow, whereas letting n =1
yields the expression for a special case of "wheel-type" flow.

Now F eand G and their derivatives are assumed of order of mag-
nitude of unity, while (cx)2<< 1. It is seen that c¢x 1is the total
turning of the flow outside the boundary layer, and because of the fore-
going restriction it must remain small. It is further assumed that

1 + zc Qup 4 . hich uld
_EGE_—'EE~ is of the order of magnitude of unity (which sho be the

case for most flows of interest and is evidenced in part by equation (16)).

Neglecting all terms of the order of (cx)2 in equations (15) and (17)
reduces these equations to the following two total differential equa-

tions: ‘
FF" + 2F''t = 0 ' (18a)
2F'G' - FG" - 26" + 2[1 - (F')2] = 0 (18b)
The corresponding boundary conditions are

F=F'=G=G"=0at1n=0
and (19)
F'=1land G' =0as -3

Equations (18) and (19) show that for small turning F is the
usual Blaslus function and that equation (18b) may be solved for G
(or G) since F is known. Such solution was obtained by relaxation
procedure inasmuch as F and its derivatives are given in tabular form
only (cf. reference 13, p. 121). The results from this computation are
presented in figure 3 and table I.

Boundary-layer thickness. - If the boundary-layer thickness & 1is
defined as the value of y at which u is a certain percentage of Uy
(usually over 99 percent), 8 corresponding value for 7 may be found
from the solution for F where this value of 17 is designated n*.
Consequently the expression for boundasry-layer thickness may be obtained

from equations (14) as
5 = n"‘/\/l + cz E’E (20)

1
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or nondimensionally in terms of the reference length x as

5 4 = :
=N Jl + cz Re (21)

On a given streamline, it can be seen from equation (20) that the
boundary-layer thickness varies directly with the square root of X.
For the special case of free vortex flow, equation (20) becomes

VX '
5 =1n% (1 + —— 22
1% (1 + cz) T (22)

and it follows that for any given x and u1, 0, thickness increases in

proportion to (l + cz) or that the boundary layer becomes thinner with
an increase in curvature of the flow. The lines of constant thickness
are obtained by considering & to be a constant in equation (22), or

constant
- =oleLaay 23
(1 + cz)@ (25)

Therefore, the curves of constant & are spirals of lituus; they are
shown in figure 4. For more general flows, the lines of constant
boundary-layer thickness are given by

u; (constant)
(L + ze)

X =

where, of course, u; is a function of (1 + zc).

Flow direction at plate surface. - From equations (12) and (14) the
expressions for u and w are ’

u=ulF'
W= cxulG'
Therefore, if
€ = lim =
-0

L5822
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the flow direction at the plate is given by

o = arc tan € (24)

However, since G!'(0) = F'(0) = O,

G" O
€= cX O) (25)

Equation (25) indicates that

0,z 0,x
inasmuch as
dul
T =
0% = 87 J(y = o)
]
TO z =
’ Y y = 0)

The ratio G"(0)/F"(0) was evaluated numerically to give the result

€= -3.26 cx

It may be seen, then, that at the plate surface the flow is deflec-
ted from the direction of the streamline toward the center of curvature
of the main-stream flow and that this deflection is proportional to the
turning. The lines of constant € are seen from equation (25) to be
those of constant turning, that is, radial lines (see fig. 4).

Effect of Compressibility

Complexity prevents the extension of the previous results to include
the effects of compressibility in the same manner as for the incompres-
sible case. For compressible flow, a solution can be obtained only in
the immediate neighborhood of a reference streamline on which the Mach
number has been specified. However, it is possible to calculate the
Mach numbers on various chosen streamlines in terms of the Mach number
specified on an initial streamline., Solutions can then be found in the
neighborhood of the chosen streamlines using the calculated Mach numbers,
To find the boundary-layer flow in any region of interest is therefore
possible,
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Simplification of energy equation. - Letting 0 = CPT and assuming
that the specific heats and Prandtl number are constant, the energy
equation can be written in terms of @ and ¥ as

2
c Wy
vyex + q9y9z - (‘l’x + cPz)ey =TT Ulchy + (1 + cz)p <[(-p—)y:l +

(re=f)

For Prandtl number equal to 1 and zero heat transfer at the plate sur-
face, equation (26) is replaced by

Cpl + 2 {(’%}2 . [?ﬂi?‘z"c?)‘] 2}: T, (27)

where Ty, is the constant temperature of the plate.

Reduction of equations to nondimensional form. ~ The following
approximate formula (reference 14) is used to represent the relation
between the viscosity and the temperature:

BT : (28)
M,0

where A 1s a constant suitably adjusted to give the best agreement
with the actual relation over the temperature range considered.

It now becomes convenient to make all physical quasntities in the
various equations nondimensional. The following system suggested in
reference 4 will be used; all quantities on the left are to be con-
sidered relative to the quantities on the right, which are measured
outside the boundary layer and along the reference axis x:

u, v, relative to uj,o

L ‘
%,¥,2, T relative to u1,08/01, 011, 0
P relative to P1,0

T relative to uzl,o/ch

LS¢2
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P ‘relative to pl,ouzl’o
¥, ® relative to “l,OA

All subsequent equations will appear in nondimensional form. As a
consequence of the use of the nondimensional form, equation (lSa)

becomes

¥y (%¥>x +'¢3'(%¥>z - (b + ) (%g)y tTrm C%?)

= (1 + cz) [ﬁ%(ﬂ—g)y}y

equation (13b) becomes

Py Py Py
WY o(l + czi}x o G ) pr-p_)z - (IFX +CPZ) o(1 + czijl_

2
g,(wy)z._ (1_+?cz)2 wz = epywy” + [ffea C%¥>¥]y

equation (27) becomes

¥ 2 2

-y Py _
T+{(p) +[pil+cz5:| = Ty
and equation (4) will be written

p
_-szTL (29)
P1,0 1,0

Transformation of Howarth. - The following transformation of vari-
ables indicated by Howarth (reference 15) is now utilized to make the
nondimensional form of equations (13a) and (13b) similar to the incom-
pressible form of these equations:
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L[y )
iy 2 »
Y= (——}—> pdy
P1,0/ Jo
X=X
7=z >
L (20) 3
P \2 '
¥ = <-——-J-‘—> ¥ «
P1,0
1
=/ P1 \2
P= (-—1 ) )
P1,0 J
As a consequence of transformations (30), equation (29), and the
fact that ap/By is of the order of magnitude &, equations (lSa),
(13b), and (27) become, respectively: .
WYWYX + QY\FY - (WX + (DZ)WYY + Ty WY¢Y %
2
_ ¥ c W Tio 1 4 -
= ¥yy (1 v T h o + (1 + cz)¥yyy (31a)
' c 2
__c _mfTo 04 (1 + cz)® (31b)
T l+cz 2 Ty Pl,0¢&Y YYY

oy Y
T+ (w&)z M (1 + cZ) = Tw (52)

The same procedure as for the incompressible flow case is now -
followed. The similarity variable and corresponding vector potential
components are defined as
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\
. u
Ty 1
1 X(T + Zo)
¥ = \/Xul(l + Zc) F(q) p (33)
& ® = cX(1 + Ze) Ruy(L + ze) &(n)
< y
By use of these definitions, equations (31) become
du
27,5 (1 + Zc) M1 2zm [ Yy 2 3
(cX)°G'F [1+ TR + (eX)°ar" | 5 My ° 5
(L +27c) ™7 FFro _
2ewyy 4z 1T 2 -~ Frit =0 (34a)
| Figr _ FG" A 2 ). g
" F'G'-—-2—+<l+TMl 1 - F? - G 4
du - | y du
2=2[ (1 + Zc) W1 o1 z} 2o (3, (L+2c) @1 ¢ 2]
(eX)“G [ @ = Mp (ex)“G"G Ehlar=rraa el RN al
(34b)
Boundary conditions are the same as in equations (19) with the
appropriate change in variables; that is
F=F"=G=0"=0 at 7=0
and
Fr =1 and G' =0 as n->0
. Once again when terms of the order of magnitude of (cx)2 are
eliminated under the same type of restrictions as in the incompressible
case, equation (34a) becomes the Blasius equation for F. However, it
'
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may be seen that equation (34b) cannot be solved directly as a total
differential equation in 7 since M; is a function of Z. In fact,

if wuj is specifically prescribed as a function of (1 + cz) (that is,
uy = £(1 + cz) where f =1 when z = 0), then M; may be expressed as

2 2 .
M2 = . M0t (35)
1 T-1 2 2 :

and in the immediate neighborhood of the reference axis X, Mj ® Ml,O
and may be considered a constant. Incorporating the preceding restric-
tions into equation (34b) gives

—_—— - — -1 .2 = \2
F'G' - G"' - 1/2FG"+ (l + T—z-Ml,O) [l ~ (F') ]: 0 (36)
This equation has the solution
- -1 _2 —
G' = (1 + ——z-‘Ml,o) G'(n) (37)

where G' is known from the incompressible case. Curves of G'(n) for
various values of Ml,O are plotted in figure 5. .

As mentioned previously, the flow in the neighborhood of stream-
lines other than an initial reference streamline may be calculated in
the same manner by taking the reference axis along the new streamline
and by computing the appropriate Mach number on this streamline from

equation (35).

Physical coordinates. - Relations (29), (30), and (32) may be used
to obtain values of y as a function of 7 for a fixed value of x

y = Y27+ [’ﬁ -J;n (F)° dﬁ] T2 o (38)

It is to be recalled, of course, that these coordinates are the non-
dimensional form of the true physical coordinates.

Interpretation of results. - From equations (18), (36), and (38),
the effect of compressibility may be seen to be twofold, namely, changes
occur in the coordinate y as a function of 7 and the differential
equation for G. These changes have a corresponding influence on the
velocity distribution, the boundary-layer thickness, and the flow deflec-
tion at the plate surface.

LS522
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- M o —
Since {:n -NI; (Fr)2 dn} is a positive function of 1, for any

given value of 1 the value of y increases with Mach number, as shown
by equation (38). Consequently, the boundary-layer thickness &
increases with Mach number. It also follows for a chosen Mach number

that

d 1/2 r-1,2 =.2\] & ’
2 - (Y [““z"Ml,o(l'F ﬂﬁ%

thereby indicating that Ou/dy increases with Mach number for
n = constant. The same effect is known to exist in two-dimensional

boundary-layer flow.

As far as the flow deflection at the plate surface is concerned,
the changes in the shape of ' (see fig. 5) and equation (25) indicate
that for a given turning the deflection toward the center of the flow
field increases with Mach number, Consequently, larger secondary flows
in the boundary layer are obtained with the increase in Mach number.

CONCLUSIONS

The following conclusions were drawn from a theoretical investiga-
tion of boundary-layer flow over a flat plate when the main-stream flow
outside the boundary layer follows concentric circular streamlines and
the total turning of that flow is small:

1. The profile of the velocity component in the direction of the
flow outside the boundary layer is identical to that existing in two-
dimensional flow over a flat plate.

2. The magnitude of the velocity component in the direction perpen-
dicular to the flow outside the boundary layer and in a plane parallel
to the plate varies directly with the turning of the main-stream flow.

3. The boundary-layer thickness varies with the square root of the
distance along the streamline of the main-stream flow as measured from
the leading edge of the plate. For the special case of free vortex
flow, the lines of constant boundary-layer thickness are spirals of
lituus.

4, The deflection of the flow at the plate surface from the direc-
tion of the main-stream flow is directly proportional to the turning of
the main-stream flow. The llines of constant deflection are therefore

radial.
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5. Both the boundary-layer thickness and the deflection at the
plate surface increase with Mach number. Consequently, larger secondary
flows in the boundary layer are obtained for higher Mach numbers.

Lewils Flight Propulsion Laboratory
National Advisory Committee for Aeronautics
Cleveland, Ohio, November 27, 1951

LSS
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APPENDIX - SYMBOLS

The following symbols are used in this report:

A constant in viscosity-temperature relation

CP specific heat at constant pressure process

c curvature of x-axis, dp/dx

]?-—t- Eulerian derivative

v vector differential operator

E energy

ﬁjg} functions related to components of vector potential

£ inertial field force

hy factor used in transformation of coordinates (i=1, 2, 3)
k thermal conductivity

M Mach number

P pressure

-ci' velocity vector

R gas constant

Re ~ Reynolds number based on X, (ulx/ v)

T temperature

u,v,w velocity camponents in curvilinear coordinate system
X,Y,Z coordinates defined by equation (30)

X,¥,2 curvilinear coordinates

o boundary-layer deflection angle measured from direction of

flow at plate surface to direction of flow outside
boundary layer
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T > © 3

<

TO,x,TO,z
o,

LA

X
Subscripts:

1

0]

NACA TN 2658

angle between Xi—axis and tangent to x-axis

ratio of specific heats
boundary-layer thickness

measure of boundary-layer deflection near plate surface,
tan o

similarity variables
value of 71 at y=5%
enthalpy, cPT
dissipation function
absolute viscosity
kinematic viscosity, p/p

density

shear stress at wall in x- and z-directions, respectively
components of vector potential

Cartesian coordinates (i = 1, 2, 3)

outside the boundary layer

on reference axis x

at plate surface

All other subscripts indicate partial differentiation.

Superscript primes indicate total differentiation.

LGS2
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TABLE I - VALUES OF G'(q)

1 6 (n) | n ¢'(n)
0] 0 3.4 -0.174
.2 | -.198 | 3.6 | -.137
4| -.356 | 3.8 | -.106
.6 | -.476 | 4.0 | -.081
.8 | -.561 || 4.2 | -.060
1.0 | -.613 | 4.4 | -.044
1.2 | -.638 || 4.6 | -.032
1.4 | -.638 | 4.8 | -.022
1.6 | -.619 | 5.0 | -.015
1.8 -.585 5.2 -.010
2.0 | -.539 || 5.4 | -.006 |
2.2 | -.486 || 5.6 | -.004
2.4 | -.430 || 5.8 | -.002
2.6 | -.372 || 6.0 | -.001
2.8 | -.316 || 6.2 | -.001
3.0 | -.264 || 6.4 | -.000

3.2 | -.216
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Leading edge
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Figure 1. - Flow over plate surface showing streamlines outside boundary layer,
orientation of axes, and orientation of velocity components within boundary

layer.
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Figure 2. - Transformatidn from Cartesian coordinates Xi
to curvilinear coordinates x,y,z.
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Figure 4. - Lines of constant © and ¢
for free vortex flow.
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